Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lesław Sieroń

Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland

Correspondence e-mail: lsieron@p.lodz.pl

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.029 wR factor = 0.067 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua(malonato- $\kappa^2 O, O'$)(pyridine-2-carboxamide- $\kappa^2 N^1, O$)copper(II) monohydrate

The title compound, $[Cu(mal)(pca)(H_2O)] \cdot H_2O$ [mal is the malonate dianion, $CH_2(COO)_2^{2-}$, and pca is pyridine-2-carboxamide, $C_6H_6N_2O$), has a five-coordinated Cu atom in a distorted square-pyramidal environment, coordinated by two O atoms of the malonate ion, an O atom and an N atom of pca, and an O atom of water. An uncoordinated water molecule stabilizes the complex by participation in a hydrogen-bonding system. The crystal structure is built from layers parallel to the (111) plane.

Received 30 January 2004 Accepted 3 February 2004 Online 7 February 2004

Comment

The present work is a continuation of earlier studies of the preparation, properties and structure of copper(II) complexes with pyridine-2-carboxamide (pca) (Sieroń & Bukowska-Strzyżewska, 1997, 1998, 1999) and with malonate (mal) ions (Tosik *et al.*, 1995). Copper(II) malonate complexes provide the framework for supramolecular crystal engineering (Ruiz-Pérez *et al.*, 2000; Shen *et al.*, 2000). The malonate ion is also a ligand often used for designing complexes with desired magnetic properties (Ruiz-Pérez *et al.*, 2003; Pasán *et al.*, 2003).

In the present structure, (I) (Fig. 1), the Cu^{II} atom is bonded to O and N atoms of pca [1.968 (2) and 2.002 (2) Å for Cu– O1 and Cu–N1, respectively], to two carboxylate O atoms from the mal ligand [1.922 (2) and 1.926 (2) Å for Cu–O2 and Cu–O4] in the basal plane, and to a water molecule in the

Figure 1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The atom-numbering scheme. The dashed line indicates a hydrogen bond.

Figure 2

The packing of (I), viewed down the *a* axis. Dashed lines indicate the hydrogen bonds.

Figure 3

Projection of the cell of (I) parallel to the (111) plane, showing the hydrogen bonds as dashed lines.

apical position [2.324 (2) Å for Cu–O6]. The coordinated malonate O4 atom from a different mononuclear unit lies at a distance of 3.273 (2) Å from the Cu atom.

The degree of trigonality $\tau = 0.08$ [τ is defined by Addison *et al.* (1984); for the regular square-pyramidal (SQP) structure, the trigonality parameter is 0, and for the trigonal-bipyramidal (TBP) structure, it increases to 1] indicates a minimal deformation of the observed SQP coordination of the Cu atom towards TBP coordination. The Cu atom deviates by 0.183 (1) Å from the basal plane towards the apical O6 atom. This significant deviation is also evident from the angles O1–Cu–O4 and O2–Cu–N1, with values of 169.16 (8) and 164.33 (8)°, respectively. The dihedral angles between the basal O₃N plane at the Cu atom and those of the O2–C7–O3 and O4–C9–O5 carboxylate groups are 13.5 (3) and 12.2 (2)°, respectively.

The six-membered chelate malonate ring adopts a slightly distorted boat conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.360 (2), $\theta = 86.4$ (3) and $\varphi = 1.8$ (4)° for the atom sequence Cu-O2-C7-C8-C9-O4. Atoms Cu and C8 lie above the mean plane defined by the remaining four atoms by 0.348 (3) and 0.282 (4) Å, respectively.

The pca chelate ring (O1-C1-C2-N1-Cu) and the O2/O4/Cu fragment of the malonate chelate ring are not exactly coplanar; the dihedral angle between them is 15.8 $(1)^{\circ}$.

Both uncoordinated mal O atoms act as acceptors for O– H, N–H and C–H donors (Table 2). The coordinated O2 atom forms a hydrogen bond to the water molecule $[O6\cdots O2 = 2.930 (2) \text{ Å}]$. These interactions generate an infinite three-dimensional hydrogen-bonding network. The water molecules occupy channels running along the *a* axis and interact with the metal complexes by hydrogen-bond interactions (Fig. 2). The periodic structure is built up from layers of complexes parallel to the (111) plane (Fig. 3). The shortest interlayer metal–metal distances are 4.2279 (6) Å for $Cu\cdots Cu^{vii}$ and 4.8098 (6) Å for $Cu\cdots Cu^{iv}$ [symmetry codes: (iv) 1 - x, 1 - y, -z; (vii) 1 - x, -y, -z].

Experimental

Crystals of (I) were grown from an aqueous solution of 2-pyridinecarbonitrile and copper(II) malonate, indicating that the copperassisted hydrolysis of 2-pyridinecarbonitrile to pyridine-2-carboxamide (Watanabe *et al.*, 1973) had occurred. A pale-blue solution formed when Cu(mal)₂·4H₂O (1 mmol) was added to an aqueous solution (50 ml) containing 2-pyridinecarbonitrile (1 mmol). After heating to boiling point, the solution became dark blue. After a few days, blue prismatic crystals of the title compound were obtained.

Crystal data

-	
$[Cu(C_{3}H_{2}O_{4})(C_{6}H_{6}N_{2}O)-$	Z = 2
$(H_2O)] \cdot H_2O$	$D_x = 1.749 \text{ Mg m}^{-3}$
$M_r = 323.76$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 4631
a = 8.0566 (5) Å	reflections
b = 8.7694 (7) Å	$\theta = 2.1-29.1^{\circ}$
c = 10.4093 (7) Å	$\mu = 1.81 \text{ mm}^{-1}$
$\alpha = 68.540 \ (7)^{\circ}$	T = 293 K
$\beta = 81.355 \ (5)^{\circ}$	Prism, blue
$\gamma = 63.933 \ (7)^{\circ}$	$0.50 \times 0.15 \times 0.03 \text{ mm}$
$V = 614.78 (9) \text{ Å}^3$	

Data collection

Kuma KM-4 CCD diffractometer ω scans Absorption correction: numerical (*XRED*; Stoe & Cie, 1999) $T_{min} = 0.729, T_{max} = 0.947$ 4723 measured reflections 2828 independent reflections

Refinement

Refinement on F^2 H atoms treated by a mixture of
independent and constrained
refinement
 $wR(F^2) = 0.067$ $wR(F^2) = 0.067$ $wR(F^2) = 0.067$ S = 0.92 $w = 1/[\sigma^2(F_o^2) + (0.0281P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$ 196 parameters $(\Delta/\sigma)_{max} < 0.001$
 $\Delta\rho_{max} = 0.88$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

2131 reflections with $I > 2\sigma(I)$

 $\begin{aligned} R_{\rm int} &= 0.031\\ \theta_{\rm max} &= 27.5^\circ \end{aligned}$

 $h = -10 \rightarrow 10$

 $k=-11\to 8$

 $l = -13 \rightarrow 13$

Table 1	
Selected geometric parameters (Å, $^{\circ}$).	

Cu-O1	1.9679 (17)	O2-C7	1.260 (3)
Cu-O2	1.9223 (16)	O3-C7	1.232 (3)
Cu-O4	1.9244 (17)	O4-C9	1.267 (3)
Cu-O6	2.3239 (18)	O5-C9	1.236 (3)
Cu-N1	2.0023 (18)		
O1-Cu-O2	86.50 (7)	O2-Cu-O6	100.56 (7)
O1-Cu-O4	169.20 (8)	O2-Cu-N1	164.35 (8)
O1-Cu-O6	96.63 (7)	O4-Cu-O6	93.78 (7)
O1-Cu-N1	81.30 (7)	O4-Cu-N1	95.75 (7)
O2-Cu-O4	94.43 (7)	O6-Cu-N1	90.60 (7)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N2-H1\cdots O5^{i}$	0.86	2.11	2.939 (2)	161
$N2-H2\cdots O7^{ii}$	0.86	1.99	2.837 (3)	168
O6−H61···O5 ⁱⁱⁱ	0.82	2.06	2.865 (3)	170
$O6-H62\cdots O2^{iv}$	0.82	2.12	2.930 (2)	171
O7-H71···O3	0.82	1.96	2.742 (2)	160
$O7-H72\cdots O3^{v}$	0.82	2.18	2.983 (3)	164
C3-H3···O7 ⁱⁱ	0.93	2.41	3.293 (3)	159
$C5-H5\cdots O3^{vi}$	0.93	2.46	3.389 (3)	174
C8-H81···O5 ⁱⁱⁱ	0.97	2.51	3.357 (3)	146

Symmetry codes: (i) x - 1, 1 + y, z; (ii) x - 1, y, 1 + z; (iii) 2 - x, -y, -z; (iv) 1 - x, 1 - y, -z; (v) 1 - x, 1 - y, -1 - z; (vi) x, y - 1, 1 + z.

The water H atoms were located in a difference Fourier map and refined with O–H distances restrained to 0.82 Å. All remaining H atoms were positioned geometrically and allowed to ride on the parent atoms with *SHELXL97* (Sheldrick, 1997) defaults for bond lengths (C–H = 0.93 or 0.97 Å, and N–H = 0.86 Å). The isotropic displacement parameters of all H atoms were refined freely.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003; cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2003; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL/PC* (Sheldrick, 1990); software used to prepare material for publication: *PLATON* (Spek, 1990).

References

- Addison, A. W., Nagaswara Rao, T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1355.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Pasán, J., Delgado, F., Rodríguez-Martín, Y., Hernández-Molina, M., Ruiz-Pérez, C., Sanchiz, J., Lloret, F. & Julve, M. (2003). *Polyhedron*, 22, 2143– 2153.
- Ruiz-Pérez, C., Rodríguez-Martín, Y., Hernández-Molina, M., Delgado, F., Pasán, J., Sanchiz, J., Lloret, F. & Julve, M. (2003). *Polyhedron*, 22, 2111– 2123.
- Ruiz-Pérez, C., Sanchiz, J., Hernandez-Molina, M., Lloret, F. & Julve, M. (2000). *Inorg. Chem.* **39**, 1363–1370.
- Shen, H.-Y., Bu, W.-M., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Wang, G.-L. (2000). Inorg. Chem. Commun. 3, 497–500.
- Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sieroń, L. & Bukowska-Strzyżewska, M. (1997). Acta Cryst. C53, 296-298.
- Sieroń, L. & Bukowska-Strzyżewska, M. (1998). Acta Cryst. C54, 322-324.
- Sieroń, L. & Bukowska-Strzyżewska, M. (1999). Acta Cryst. C55, 491-494.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Stoe & Cie (1999). X-RED. Version 1.18. Stoe & Cie, Darmstadt, Germany. Tosik, A., Sieroń, L. & Bukowska-Strzyżewska, M. (1995). Acta Cryst. C51, 1987–1989.
- Watanabe, K., Komiya, S. & Suzuki, S. (1973). Bull. Chem. Soc. Jpn, 46, 2792–2794.